다양한 통계적 검정 방법 데이터 사이언스의 세계에서는 다양한 통계적 방법들이 중요한 역할을 한다. 이러한 방법들은 데이터를 분석하고, 숨겨진 패턴을 발견하며,
Continue reading[카테고리:] AI Research
귀무 가설(Null Hypothesis)과 대립 가설(Alternative Hypothesis)의 차이점: 데이터 사이언스의 필수 요소 이해하기
오늘은 통계학과 데이터 사이언스에서 매우 중요한 개념인 ‘귀무 가설(Null Hypothesis)’과 ‘대립 가설(Alternative Hypothesis)’에 대해 알아볼 예정이다. 이 두 가설은 실험적
Continue reading베이즈 정리(Bayes’ Theorem)의 근본적인 이해와 활용: 데이터 사이언스의 필수 요소 이해하기
오늘은 데이터 사이언스의 근본적인 이론 중 하나인 ‘베이즈 정리(Bayes’ Theorem)’에 대해 정리해보고자 한다. 베이즈 정리(Bayes’ theorem), 어떤 사건이 서로 배반하는
Continue reading조건부 확률의 개념과 계산 방법: 데이터 사이언스의 필수 요소 이해하기
조건부 확률은 어떤 사건이 일어날 확률을 다른 사건이 이미 발생했다는 조건 하에서 평가하는 것이다. 이 개념은 의사 결정, 예측 모델링,
Continue reading생존 분석(Survival Analysis)의 개념과 적용 사례: 데이터 사이언스의 필수 요소 이해하기
‘생존 분석(Survival Analysis)’은 데이터 사이언스 분야에서 매우 중요한 개념이며, 생존 분석은 시간에 따른 사건 발생을 분석하는 강력한 통계적 도구로, 다양한
Continue reading데이터 정규화(Data Normalization) 방법과 이유, 샘플 코드: 데이터 사이언스의 필수 요소 이해하기
일반적인 데이터 정규화 방법 최소-최대 정규화(Min-Max Normalization) Z-점수 정규화(Z-Score Normalization) 로버스트 정규화(Robust Scaling) 정규화 방법에 따른 차이를 차트로 확인하기 데이터
Continue reading모수적 방법(Parametric Methods)과 비모수적 방법(Non-Parametric Methods)이란?: 데이터 사이언스의 필수 요소 이해하기
모수적 방법 (Parametric Methods)이란? 모수적 방법은 모집단이 특정 분포(대개 정규 분포)를 따른다고 가정하는 통계적 분석 방법이다. 이러한 방법은 분포의 특정
Continue reading제1종 오류(Type I error)와 제2종 오류(Type II error)의 차이점은 무엇인가?: 데이터 사이언스의 필수 요소 이해하기
제1종 오류 (Type I Error) 제2종 오류 (Type II Error) 차이점 이 두 오류 사이의 균형을 맞추는 것은 통계적 분석에서
Continue reading중심 극한 정리(Central Limit Theorem, CLT) 란? : 데이터 사이언스의 필수 요소 이해하기
중심 극한 정리(Central Limit Theorem, CLT)란 무엇일까? 중심 극한 정리는 통계학의 기본 이론 중 하나로, 간단히 말해 “충분히 큰 크기의
Continue reading탐색적 데이터 분석(EDA, Exploratory Data Analysis) 이란?: 데이터 사이언스의 필수 요소 이해하기
탐색적 데이터 분석(Exploratory Data Analysis, EDA)이란 데이터를 분석하기 전에 데이터의 주요 특성을 이해하고, 데이터에 숨겨진 패턴, 이상치, 구조 등을 탐색하는
Continue reading