머신러닝 모델을 구축할 때, 사용되는 데이터의 유형은 매우 다양할 수 있다. 이 중 하나의 접근법이 바로 “Mixed Data Learning”이다. 이
Continue reading[태그:] 데이터전처리
빅데이터 AI 학습: 효율적인 대용량 데이터 로드와 처리 방법
현대의 인공지능(AI) 모델은 정확한 예측과 성능을 위해 대용량의 빅 데이터로 학습하는 것이 중요하다. 그러나 대용량 데이터를 불러오고 전처리하는 데는 상당한
Continue reading이상치(Outlier)를 어떻게 식별하고 처리할까?: 데이터 사이언스의 필수 요소 이해하기
“이상치(Outlier)”란 데이터 세트에서 다른 관찰값들과 크게 다른 값을 가진 관찰 결과를 말한다. 이상치는 데이터 수집, 측정 오류 또는 실제 변동성으로
Continue reading다양한 결측치(Missing Data) 처리 방법: 데이터 사이언스의 필수 요소 이해하기
‘결측치(Missing Data)‘란 데이터 세트에서 관찰되지 않거나 기록되지 않은 값들을 의미한다. 다양한 이유로 데이터 수집 과정에서 일부 정보가 누락되거나, 기록되지 않아
Continue reading데이터의 정규 분포 특성: 데이터 사이언스의 필수 요소 이해하기
데이터가 정규 분포를 따른다는 가정은 데이터 사이언스와 통계학에서 매우 중요한 역할을 하며, 정규 분포의 이해는 분석의 정확도와 신뢰성을 높이는 데
Continue reading[Perception] 딥러닝 기반 이미지 인식 기술의 다양한 응용 분야와 주요 적용 사례(Deep Learning Vision Recognition Technology)
우리가 일상에서 마주하는 수많은 기술들 중, 이미지 인식은 지금 컴퓨터 비전(Computer Vision)의 반드시 필요한 기술이 되었다. 스마트폰에서부터 자율주행 차량까지 이
Continue reading