시계열 데이터 분석은 데이터 사이언스의 중요한 영역 중 하나이며, 그 중에서도 계절성을 고려한 시계열 분석은 매우 중요합니다.이번 포스트에서는 계절성 자기회귀
Continue reading[태그:] 예측모델
시계열 분석 – 자기회귀 통합 이동 평균 모델(ARIMA, Autoregressive Integrated Moving Average Model): 데이터 사이언스의 필수 요소 이해하기
시계열 데이터 분석은 현대 데이터 사이언스의 중요한 부분이다. 그 중에서도 자기회귀 통합 이동 평균 모델(ARIMA)은 복잡한 시계열 데이터를 분석하고 예측하는
Continue reading시계열 분석 – 자기회귀 모델(AR, Autoregressive Model): 데이터 사이언스의 필수 요소 이해하기
시계열 데이터 분석(Time Series Analysis)을 알아봄에 있어서 고전적 시계열 모델들을 먼저 살펴보고자 한다. 그중 자기회귀 모델(AR, Autoregressive Model)은 “현재는 과거에
Continue reading