머신러닝 모델을 구축할 때, 사용되는 데이터의 유형은 매우 다양할 수 있다. 이 중 하나의 접근법이 바로 “Mixed Data Learning”이다. 이
Continue reading[태그:] 인공지능
[Python 예제 코드] Retrieval-Augmented Generation(RAG)의 단계별 코드 구현 가이드와 데이터의 중요성
Retrieval-Augmented Generation(RAG) 모델은 정보 검색과 텍스트 생성을 결합한 혁신적인 AI 기술이다. 이번 포스트에서는 Python을 사용하여 간단한 RAG 모델을 구현하고, 그
Continue readingRetrieval-Augmented Generation(RAG): 강력한 지식 기반 응답 생성을 위한 AI 기술 소개
현대의 인공지능(AI) 모델은 사용자 질문에 대한 정확하고 풍부한 답변을 제공하기 위해 끊임없이 발전하고 있다. 그 중 하나의 혁신적인 접근법이 바로
Continue reading[Python] Jupyter Notebook 및 Jupyter Lab 단축키 가이드
Jupyter Notebook과 Jupyter Lab은 데이터 사이언티스트와 개발자에게 필수적인 도구이다.이들 환경에서는 단축키를 사용하여 생산성을 더욱 극대화할 수 있으므로, 단축키를 정리하여 공유
Continue reading멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL) 이란? – 응용 분야
멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL)은 다수의 에이전트가 동시에 학습하고 상호작용하는 환경에서 최적의 행동을 학습하는 강화 학습 방법을 말한다.
Continue reading멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL) 이란? – 주요 도전 과제
멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL)은 다수의 에이전트가 동시에 학습하고 상호작용하는 환경에서 최적의 행동을 학습하는 강화 학습 방법을 말한다.
Continue reading멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL) 이란? – 알고리즘과 접근법
멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL)은 다수의 에이전트가 동시에 학습하고 상호작용하는 환경에서 최적의 행동을 학습하는 강화 학습 방법을 말한다.
Continue reading멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL) 이란? – 협력과 경쟁
멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL)은 다수의 에이전트가 동시에 학습하고 상호작용하는 환경에서 최적의 행동을 학습하는 강화 학습 방법을 말한다.
Continue reading[Python] NumPy: ValueError: operands could not be broadcast together 문제 해결하기
NumPy는 파이썬에서 과학 계산을 위해 널리 사용되는 라이브러리이다. 그러나 가끔 NumPy를 사용할 때 ValueError: operands could not be broadcast together
Continue reading멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL) 이란? – 기본 개념
멀티 에이전트 강화 학습(Multi-Agent Reinforcement Learning, MARL)은 다수의 에이전트가 동시에 학습하고 상호작용하는 환경에서 최적의 행동을 학습하는 강화 학습 방법을 말한다.
Continue reading