중심 극한 정리(Central Limit Theorem, CLT)란 무엇일까? 중심 극한 정리는 통계학의 기본 이론 중 하나로, 간단히 말해 “충분히 큰 크기의
Continue reading탐색적 데이터 분석(EDA, Exploratory Data Analysis) 이란?: 데이터 사이언스의 필수 요소 이해하기
탐색적 데이터 분석(Exploratory Data Analysis, EDA)이란 데이터를 분석하기 전에 데이터의 주요 특성을 이해하고, 데이터에 숨겨진 패턴, 이상치, 구조 등을 탐색하는
Continue reading상관 관계(Correlation)와 인과 관계(Causation)의 차이점: 데이터 사이언스의 필수 요소 이해하기
상관 관계 (Correlation) 인과 관계 (Causation) 차이점 상관 관계와 인과 관계의 구분은 데이터를 분석하고 해석할 때 매우 중요하다.데이터에서 상관 관계를
Continue reading점 추정(Point estimation)과 구간 추정(Interval estimation)의 차이점: 데이터 사이언스의 필수 요소 이해하기
점 추정 (Point Estimation) 구간 추정 (Interval Estimation) 차이점 점 추정과 구간 추정은 각각 다른 상황과 요구 사항에 따라 선택되며,
Continue reading정규 분포(Normal distribution)와 이항 분포(Binomial distribution)의 차이점: 데이터 사이언스의 필수 요소 이해하기
정규 분포 (Normal Distribution) 이항 분포 (Binomial Distribution) 주요 차이점 이 두 분포는 통계학에서 매우 중요하며, 다양한 종류의 데이터를 이해하고
Continue reading모집단(Population)과 표본(Sample)의 차이점: 데이터 사이언스의 필수 요소 이해하기
모집단 (Population) 표본 (Sample) 차이점 이러한 차이점을 이해하는 것은 데이터를 해석하고, 연구 결과를 일반화하는 방법을 결정하는 데 중요하며, 데이터 사이언스에서
Continue reading분산(Variance)과 표준편차(Standard Deviation)가 제공하는 정보: 데이터 사이언스의 필수 요소 이해하기
분산 (Variance) 표준편차 (Standard Deviation) 분산과 표준편차는 데이터의 변동성 또는 흩어진 정도를 수치적으로 나타내는 중요한 통계적 측정 도구이다. 분산은 데이터의
Continue reading평균(Mean), 중앙값(Median), 모드(Mode)의 차이점: 데이터 사이언스의 필수 요소 이해하기
평균 (Mean) 중앙값 (Median) 모드 (Mode) 이 세 가지 측정치는 데이터의 중심 경향성을 파악하는 데 있어 서로 다른 측면을 제공한다.
Continue readingChatGPT API 활용 소스 코드 공개: 지속적 대화 구현(AI 언어상담사 구현)
인공지능 기술이 발전함에 따라, 우리는 일상에서 다양한 방식으로 AI를 활용하고 있다. OpenAI의 ChatGPT는 이러한 변화를 주도하는 중요한 예 중 하나이며,
Continue reading[ChatGPT, GPT-4 Turbo] GPT-4 터보 기능, 성능, 및 트레이닝 데이터
OpenAI는 GPT-4 Turbo 모델을 Release 하였다. 이 모델은 인공지능 기술의 새로운 경지를 보여주며, 다양한 분야에서의 응용 가능성을 높여주고 있다. GPT-4
Continue reading