벡터 자기회귀 모델(VAR, Vector Autoregressive Model)은 여러 변수 간의 상호작용을 모델링하는 강력한 통계적 접근법으로 데이터 사이언스 분야에서, 경제학, 재무학, 사회과학,
Continue reading[태그:] StatisticalModeling
시계열 분석 – 자기회귀 통합 이동 평균 모델(ARIMA, Autoregressive Integrated Moving Average Model): 데이터 사이언스의 필수 요소 이해하기
시계열 데이터 분석은 현대 데이터 사이언스의 중요한 부분이다. 그 중에서도 자기회귀 통합 이동 평균 모델(ARIMA)은 복잡한 시계열 데이터를 분석하고 예측하는
Continue reading데이터의 정규 분포 특성: 데이터 사이언스의 필수 요소 이해하기
데이터가 정규 분포를 따른다는 가정은 데이터 사이언스와 통계학에서 매우 중요한 역할을 하며, 정규 분포의 이해는 분석의 정확도와 신뢰성을 높이는 데
Continue reading모수적 방법(Parametric Methods)과 비모수적 방법(Non-Parametric Methods)이란?: 데이터 사이언스의 필수 요소 이해하기
모수적 방법 (Parametric Methods)이란? 모수적 방법은 모집단이 특정 분포(대개 정규 분포)를 따른다고 가정하는 통계적 분석 방법이다. 이러한 방법은 분포의 특정
Continue reading