현대의 인공지능(AI) 모델은 사용자 질문에 대한 정확하고 풍부한 답변을 제공하기 위해 끊임없이 발전하고 있다. 그 중 하나의 혁신적인 접근법이 바로
Continue reading[태그:] DataQuality
이상치(Outlier)를 어떻게 식별하고 처리할까?: 데이터 사이언스의 필수 요소 이해하기
“이상치(Outlier)”란 데이터 세트에서 다른 관찰값들과 크게 다른 값을 가진 관찰 결과를 말한다. 이상치는 데이터 수집, 측정 오류 또는 실제 변동성으로
Continue reading다양한 결측치(Missing Data) 처리 방법: 데이터 사이언스의 필수 요소 이해하기
‘결측치(Missing Data)‘란 데이터 세트에서 관찰되지 않거나 기록되지 않은 값들을 의미한다. 다양한 이유로 데이터 수집 과정에서 일부 정보가 누락되거나, 기록되지 않아
Continue reading데이터 정규화(Data Normalization) 방법과 이유, 샘플 코드: 데이터 사이언스의 필수 요소 이해하기
일반적인 데이터 정규화 방법 최소-최대 정규화(Min-Max Normalization) Z-점수 정규화(Z-Score Normalization) 로버스트 정규화(Robust Scaling) 정규화 방법에 따른 차이를 차트로 확인하기 데이터
Continue reading