데이터 과학과 머신러닝에서 차원 축소는 분석 및 모델링의 성능을 높이기 위해 매우 중요한 과정이다. 그 중 선형 판별 분석(LDA, Linear
Continue reading[태그:] 데이터사이언스
주성분 분석(PCA) 완벽 활용 가이드: 데이터 차원 축소 알고리즘의 이해와 Python 구현
데이터 과학과 머신러닝에서는 고차원의 데이터가 문제 해결의 중요한 요소이다. 그러나 차원이 클수록 계산 비용이 증가하고, 과적합(overfitting)의 위험이 커질 수 있다.
Continue reading데이터 사이언스에서 사용하는 데이터 축소: 주요 알고리즘 정리
데이터 사이언스에서는 종종 매우 큰 데이터 세트를 다루게 된다. 그러나 데이터가 클수록 처리 속도가 느려지고, 분석의 복잡성이 증가할 수 있다.
Continue reading[Python 예제 코드] Retrieval-Augmented Generation(RAG)의 단계별 코드 구현 가이드와 데이터의 중요성
Retrieval-Augmented Generation(RAG) 모델은 정보 검색과 텍스트 생성을 결합한 혁신적인 AI 기술이다. 이번 포스트에서는 Python을 사용하여 간단한 RAG 모델을 구현하고, 그
Continue readingRetrieval-Augmented Generation(RAG): 강력한 지식 기반 응답 생성을 위한 AI 기술 소개
현대의 인공지능(AI) 모델은 사용자 질문에 대한 정확하고 풍부한 답변을 제공하기 위해 끊임없이 발전하고 있다. 그 중 하나의 혁신적인 접근법이 바로
Continue reading[Python] Jupyter Notebook 및 Jupyter Lab 단축키 가이드
Jupyter Notebook과 Jupyter Lab은 데이터 사이언티스트와 개발자에게 필수적인 도구이다.이들 환경에서는 단축키를 사용하여 생산성을 더욱 극대화할 수 있으므로, 단축키를 정리하여 공유
Continue reading자연어 처리(NLP)의 기본: 텍스트 전처리부터 기계 번역까지
자연어 처리(Natural Language Processing, NLP)는 인간의 언어를 컴퓨터가 이해하고 처리할 수 있도록 하는 인공지능의 한 분야이다. NLP는 텍스트 분석, 감성
Continue reading데이터 사이언티스트(Data Scientist)란 무엇인가?
오늘은 ‘데이터 사이언티스트(Data Scientist)‘라는 직업에 대해 이야기해보고자 한다. 데이터 사이언스(Data Science)란? 쉽게 접근해보자면, 데이터 사이언스는 크게 데이터에서 의미있는 정보와 지식을
Continue reading시계열 분석 – 벡터 자기회귀 모델(VAR, Vector Autoregressive Model): 데이터 사이언스의 필수 요소 이해하기
벡터 자기회귀 모델(VAR, Vector Autoregressive Model)은 여러 변수 간의 상호작용을 모델링하는 강력한 통계적 접근법으로 데이터 사이언스 분야에서, 경제학, 재무학, 사회과학,
Continue reading시계열 분석 – 계절성 자기회귀 통합 이동 평균 모델(SARIMA, Seasonal ARIMA): 데이터 사이언스의 필수 요소 이해하기
시계열 데이터 분석은 데이터 사이언스의 중요한 영역 중 하나이며, 그 중에서도 계절성을 고려한 시계열 분석은 매우 중요합니다.이번 포스트에서는 계절성 자기회귀
Continue reading