오늘은 데이터 분석에서 자주 사용되는 두 가지 회귀 방법, 선형 회귀와 로지스틱 회귀에 대해 알아볼 예정이다. 이 두 방법은 비슷한
Continue reading
오늘은 데이터 분석에서 자주 사용되는 두 가지 회귀 방법, 선형 회귀와 로지스틱 회귀에 대해 알아볼 예정이다. 이 두 방법은 비슷한
Continue reading
통계적 검정에서 데이터 분석과 의사결정 과정에서 핵심적인 역할을 하고 있는 통계학에서 매우 중요한 개념인 ‘p-값(p-value)‘에 대해 알아보도록 하자. p-값의 정의와
Continue reading
“선형 회귀(Linear Regression)“와 “다중 회귀(Multiple Regression)“는 데이터 분석과 예측 모델링에서 널리 사용되는 두 가지 회귀 분석 방법이다. 이들의 주요 차이점은
Continue reading
다양한 통계적 검정 방법 데이터 사이언스의 세계에서는 다양한 통계적 방법들이 중요한 역할을 한다. 이러한 방법들은 데이터를 분석하고, 숨겨진 패턴을 발견하며,
Continue reading
오늘은 통계학과 데이터 사이언스에서 매우 중요한 개념인 ‘귀무 가설(Null Hypothesis)’과 ‘대립 가설(Alternative Hypothesis)’에 대해 알아볼 예정이다. 이 두 가설은 실험적
Continue reading
조건부 확률은 어떤 사건이 일어날 확률을 다른 사건이 이미 발생했다는 조건 하에서 평가하는 것이다. 이 개념은 의사 결정, 예측 모델링,
Continue reading
‘생존 분석(Survival Analysis)’은 데이터 사이언스 분야에서 매우 중요한 개념이며, 생존 분석은 시간에 따른 사건 발생을 분석하는 강력한 통계적 도구로, 다양한
Continue reading
모수적 방법 (Parametric Methods)이란? 모수적 방법은 모집단이 특정 분포(대개 정규 분포)를 따른다고 가정하는 통계적 분석 방법이다. 이러한 방법은 분포의 특정
Continue reading
제1종 오류 (Type I Error) 제2종 오류 (Type II Error) 차이점 이 두 오류 사이의 균형을 맞추는 것은 통계적 분석에서
Continue reading
탐색적 데이터 분석(Exploratory Data Analysis, EDA)이란 데이터를 분석하기 전에 데이터의 주요 특성을 이해하고, 데이터에 숨겨진 패턴, 이상치, 구조 등을 탐색하는
Continue reading