Streamlit은 Python을 사용하여 데이터 기반 웹 애플리케이션을 쉽고 빠르게 개발할 수 있는 오픈 소스 라이브러리이다. 데이터 사이언티스트와 머신러닝 엔지니어들이 데이터
Continue reading
Streamlit은 Python을 사용하여 데이터 기반 웹 애플리케이션을 쉽고 빠르게 개발할 수 있는 오픈 소스 라이브러리이다. 데이터 사이언티스트와 머신러닝 엔지니어들이 데이터
Continue reading
데이터 사이언스과 머신러닝에서 고차원 데이터는 매우 일반적이다. 하지만 고차원 데이터를 분석하고 시각화하는 것은 쉽지 않다. 이를 해결하기 위해 t-SNE(t-Distributed Stochastic
Continue reading
데이터 사이언스와 머신러닝에서 차원 축소는 분석 및 모델링의 성능을 높이기 위해 매우 중요한 과정이다. 그 중 선형 판별 분석(LDA, Linear
Continue reading
데이터 사이언스와 머신러닝에서는 고차원의 데이터가 문제 해결의 중요한 요소이다. 그러나 차원이 클수록 계산 비용이 증가하고, 과적합(overfitting)의 위험이 커질 수 있다.
Continue reading
다익스트라 알고리즘(Dijkstra’s Algorithm)은 가중치가 있는 그래프에서 최단 경로를 찾는 가장 널리 사용되는 알고리즘 중 하나이다. 이 알고리즘은 네트워크 라우팅, 지도
Continue reading
When building a machine learning model, the types of data used can vary widely. One approach to handling this variety
Continue reading
Jupyter Notebook and Jupyter Lab are essential tools for data scientists and developers. Using shortcuts in these environments can significantly
Continue reading
현대의 인공지능(AI) 모델은 사용자 질문에 대한 정확하고 풍부한 답변을 제공하기 위해 끊임없이 발전하고 있다. 그 중 하나의 혁신적인 접근법이 바로
Continue reading
Modern AI models rely heavily on large volumes of data for accurate predictions and performance. However, loading and preprocessing large
Continue reading
Today, we delve into one of the fundamental theories in data science: Bayes’ Theorem. This theorem provides a powerful framework
Continue reading