데이터 사이언스와 머신러닝에서 차원 축소는 분석 및 모델링의 성능을 높이기 위해 매우 중요한 과정이다. 그 중 선형 판별 분석(LDA, Linear
Continue reading
데이터 사이언스와 머신러닝에서 차원 축소는 분석 및 모델링의 성능을 높이기 위해 매우 중요한 과정이다. 그 중 선형 판별 분석(LDA, Linear
Continue reading데이터 사이언스와 머신러닝에서는 고차원의 데이터가 문제 해결의 중요한 요소이다. 그러나 차원이 클수록 계산 비용이 증가하고, 과적합(overfitting)의 위험이 커질 수 있다.
Continue reading오늘은 새로운 모델 OpenAI ‘o1’이 출시되고 사용해 볼 수 있도록 업데이트 되어, ‘o1’ 모델 소개 및 사용기 포스트를 작성해보고자 한다.
Continue reading오늘은 9월 12일에 발표된 OpenAI의 새로운 대형 언어 모델 ‘o1’에 대해 자세히 소개하고자 한다. ‘o1’은 강화 학습을 통해 복잡한 추론
Continue reading머신러닝 모델을 구축할 때, 사용되는 데이터의 유형은 매우 다양할 수 있다. 이 중 하나의 접근법이 바로 “Mixed Data Learning”이다. 이
Continue readingRetrieval-Augmented Generation(RAG) 모델은 정보 검색과 텍스트 생성을 결합한 혁신적인 AI 기술이다. 이번 포스트에서는 Python을 사용하여 간단한 RAG 모델을 구현하고, 그
Continue reading현대의 인공지능(AI) 모델은 사용자 질문에 대한 정확하고 풍부한 답변을 제공하기 위해 끊임없이 발전하고 있다. 그 중 하나의 혁신적인 접근법이 바로
Continue readingJupyter Notebook과 Jupyter Lab은 데이터 사이언티스트와 개발자에게 필수적인 도구이다.이들 환경에서는 단축키를 사용하여 생산성을 더욱 극대화할 수 있으므로, 단축키를 정리하여 공유
Continue readingNumPy는 파이썬에서 과학 계산을 위해 널리 사용되는 라이브러리이다. 그러나 가끔 NumPy를 사용할 때 ValueError: operands could not be broadcast together
Continue reading현대의 인공지능(AI) 모델은 정확한 예측과 성능을 위해 대용량의 빅 데이터로 학습하는 것이 중요하다. 그러나 대용량 데이터를 불러오고 전처리하는 데는 상당한
Continue reading