벡터 자기회귀 모델(VAR, Vector Autoregressive Model)은 여러 변수 간의 상호작용을 모델링하는 강력한 통계적 접근법으로 데이터 사이언스 분야에서, 경제학, 재무학, 사회과학,
Continue reading
벡터 자기회귀 모델(VAR, Vector Autoregressive Model)은 여러 변수 간의 상호작용을 모델링하는 강력한 통계적 접근법으로 데이터 사이언스 분야에서, 경제학, 재무학, 사회과학,
Continue reading
시계열 데이터 분석은 데이터 사이언스의 중요한 영역 중 하나이며, 그 중에서도 계절성을 고려한 시계열 분석은 매우 중요합니다.이번 포스트에서는 계절성 자기회귀
Continue reading
시계열 데이터 분석은 현대 데이터 사이언스의 중요한 부분이다. 그 중에서도 자기회귀 통합 이동 평균 모델(ARIMA)은 복잡한 시계열 데이터를 분석하고 예측하는
Continue reading
시계열 분석의 주요 영역 중 하나는 이동 평균 모델(Moving Average Model, MA)이다. 이 포스트에서는 MA 모델의 기본 원리와 이를 데이터
Continue reading
시계열 데이터 분석(Time Series Analysis)을 알아봄에 있어서 고전적 시계열 모델들을 먼저 살펴보고자 한다. 그중 자기회귀 모델(AR, Autoregressive Model)은 “현재는 과거에
Continue reading
시계열 데이터 분석(Time Series Analysis)은 시간에 따른 데이터의 변화와 패턴을 분석하는 통계적 접근법이다.시계열 데이터는 금융, 경제, 기상학, 심리학 등 다양한
Continue reading
오늘은 데이터 사이언스의 핵심 개념 중 하나인 ‘데이터의 객체(Data Object)와 속성(Attributes) 유형’에 대해 알아보고자 한다. 데이터 객체란? 데이터 객체(Data Object)는
Continue reading
데이터가 정규 분포를 따른다는 가정은 데이터 사이언스와 통계학에서 매우 중요한 역할을 하며, 정규 분포의 이해는 분석의 정확도와 신뢰성을 높이는 데
Continue reading
오늘은 데이터 분석에서 자주 사용되는 두 가지 회귀 방법, 선형 회귀와 로지스틱 회귀에 대해 알아볼 예정이다. 이 두 방법은 비슷한
Continue reading
통계적 검정에서 데이터 분석과 의사결정 과정에서 핵심적인 역할을 하고 있는 통계학에서 매우 중요한 개념인 ‘p-값(p-value)‘에 대해 알아보도록 하자. p-값의 정의와
Continue reading