‘결측치(Missing Data)‘란 데이터 세트에서 관찰되지 않거나 기록되지 않은 값들을 의미한다. 다양한 이유로 데이터 수집 과정에서 일부 정보가 누락되거나, 기록되지 않아
Continue reading
‘결측치(Missing Data)‘란 데이터 세트에서 관찰되지 않거나 기록되지 않은 값들을 의미한다. 다양한 이유로 데이터 수집 과정에서 일부 정보가 누락되거나, 기록되지 않아
Continue reading현대 데이터 분석 환경에서 다루는 데이터는 크게 정형 데이터(Structured Data)와 비정형 데이터(Unstructured Data)로 나뉜다.이 두 가지는 저장 방식, 구조, 처리
Continue reading“이상치(Outlier)“는 데이터 분석에서 자주 마주하게 되는 중요한 요소이다.이는 다른 데이터 포인트들과 현저히 다른 값을 가지는 관측값으로, 데이터 수집 과정의 오류일
Continue reading데이터 사이언스에서는 종종 매우 큰 데이터 세트를 다루게 된다. 그러나 데이터가 클수록 처리 속도가 느려지고, 분석의 복잡성이 증가할 수 있다.
Continue reading머신러닝과 데이터 분석에서 SQL은 필수적인 도구이다.이번 포스트에서는 JOIN, 집계 함수, 서브쿼리를 사용하여 더욱 복잡한 데이터 분석을 수행하는 방법을 데이터 사이언스
Continue reading데이터 사이언스와 머신러닝에서 차원 축소는 분석 및 모델링의 성능을 높이기 위해 매우 중요한 과정이다. 그 중 선형 판별 분석(LDA, Linear
Continue reading데이터 사이언스와 머신러닝에서는 고차원의 데이터가 문제 해결의 중요한 요소이다. 그러나 차원이 클수록 계산 비용이 증가하고, 과적합(overfitting)의 위험이 커질 수 있다.
Continue readingRetrieval-Augmented Generation(RAG) 모델은 정보 검색과 텍스트 생성을 결합한 혁신적인 AI 기술이다. 이번 포스트에서는 Python을 사용하여 간단한 RAG 모델을 구현하고, 그
Continue reading현대의 인공지능(AI) 모델은 사용자 질문에 대한 정확하고 풍부한 답변을 제공하기 위해 끊임없이 발전하고 있다. 그 중 하나의 혁신적인 접근법이 바로
Continue readingJupyter Notebook과 Jupyter Lab은 데이터 사이언티스트와 개발자에게 필수적인 도구이다.이들 환경에서는 단축키를 사용하여 생산성을 더욱 극대화할 수 있으므로, 단축키를 정리하여 공유
Continue reading