The Subtleties of Statistics Statistics uniquely deal with uncertainty and randomness, distinguishing it sharply from other mathematical topics that are
Continue reading[태그:] Statistics
데이터 사이언티스트(Data Scientist)란 무엇인가?
오늘은 ‘데이터 사이언티스트(Data Scientist)‘라는 직업에 대해 이야기해보고자 한다. 데이터 사이언스(Data Science)란? 쉽게 접근해보자면, 데이터 사이언스는 크게 데이터에서 의미있는 정보와 지식을
Continue reading시계열 분석 – 이동 평균 모델(MA, Moving Average Model): 데이터 사이언스의 필수 요소 이해하기
시계열 분석의 주요 영역 중 하나는 이동 평균 모델(Moving Average Model, MA)이다. 이 포스트에서는 MA 모델의 기본 원리와 이를 데이터
Continue reading데이터의 객체(Data Object)와 속성(Attributes) 유형: 데이터 사이언스의 필수 요소 이해하기
오늘은 데이터 사이언스의 핵심 개념 중 하나인 ‘데이터의 객체(Data Object)와 속성(Attributes) 유형’에 대해 알아보고자 한다. 데이터 객체란? 데이터 객체(Data Object)는
Continue reading다양한 결측치(Missing Data) 처리 방법: 데이터 사이언스의 필수 요소 이해하기
‘결측치(Missing Data)‘란 데이터 세트에서 관찰되지 않거나 기록되지 않은 값들을 의미한다. 다양한 이유로 데이터 수집 과정에서 일부 정보가 누락되거나, 기록되지 않아
Continue reading데이터의 정규 분포 특성: 데이터 사이언스의 필수 요소 이해하기
데이터가 정규 분포를 따른다는 가정은 데이터 사이언스와 통계학에서 매우 중요한 역할을 하며, 정규 분포의 이해는 분석의 정확도와 신뢰성을 높이는 데
Continue reading선형 회귀와 다중 회귀의 이해와 Python 예제 코드: 데이터 사이언스의 필수 요소 이해하기
“선형 회귀(Linear Regression)“와 “다중 회귀(Multiple Regression)“는 데이터 분석과 예측 모델링에서 널리 사용되는 두 가지 회귀 분석 방법이다. 이들의 주요 차이점은
Continue reading다양한 통계적 검정 방법과 Python 샘플코드 및 분석: 데이터 사이언스의 필수 요소 이해하기
다양한 통계적 검정 방법 데이터 사이언스의 세계에서는 다양한 통계적 방법들이 중요한 역할을 한다. 이러한 방법들은 데이터를 분석하고, 숨겨진 패턴을 발견하며,
Continue reading조건부 확률의 개념과 계산 방법: 데이터 사이언스의 필수 요소 이해하기
조건부 확률은 어떤 사건이 일어날 확률을 다른 사건이 이미 발생했다는 조건 하에서 평가하는 것이다. 이 개념은 의사 결정, 예측 모델링,
Continue reading모수적 방법(Parametric Methods)과 비모수적 방법(Non-Parametric Methods)이란?: 데이터 사이언스의 필수 요소 이해하기
모수적 방법 (Parametric Methods)이란? 모수적 방법은 모집단이 특정 분포(대개 정규 분포)를 따른다고 가정하는 통계적 분석 방법이다. 이러한 방법은 분포의 특정
Continue reading