“이상치(Outlier)“는 데이터 분석에서 자주 마주하게 되는 중요한 요소이다.이는 다른 데이터 포인트들과 현저히 다른 값을 가지는 관측값으로, 데이터 수집 과정의 오류일
Continue reading
“이상치(Outlier)“는 데이터 분석에서 자주 마주하게 되는 중요한 요소이다.이는 다른 데이터 포인트들과 현저히 다른 값을 가지는 관측값으로, 데이터 수집 과정의 오류일
Continue reading시계열 데이터 분석은 데이터 사이언스의 중요한 영역 중 하나이며, 그 중에서도 계절성을 고려한 시계열 분석은 매우 중요합니다.이번 포스트에서는 계절성 자기회귀
Continue reading시계열 분석의 주요 영역 중 하나는 이동 평균 모델(Moving Average Model, MA)이다. 이 포스트에서는 MA 모델의 기본 원리와 이를 데이터
Continue reading오늘은 데이터 분석에서 자주 사용되는 두 가지 회귀 방법, 선형 회귀와 로지스틱 회귀에 대해 알아볼 예정이다. 이 두 방법은 비슷한
Continue reading오늘은 통계학과 데이터 사이언스에서 매우 중요한 개념인 ‘귀무 가설(Null Hypothesis)’과 ‘대립 가설(Alternative Hypothesis)’에 대해 알아볼 예정이다. 이 두 가설은 실험적
Continue reading일반적인 데이터 정규화 방법 최소-최대 정규화(Min-Max Normalization) Z-점수 정규화(Z-Score Normalization) 로버스트 정규화(Robust Scaling) 정규화 방법에 따른 차이를 차트로 확인하기 데이터
Continue reading모수적 방법 (Parametric Methods)이란? 모수적 방법은 모집단이 특정 분포(대개 정규 분포)를 따른다고 가정하는 통계적 분석 방법이다. 이러한 방법은 분포의 특정
Continue reading제1종 오류 (Type I Error) 제2종 오류 (Type II Error) 차이점 이 두 오류 사이의 균형을 맞추는 것은 통계적 분석에서
Continue reading탐색적 데이터 분석(Exploratory Data Analysis, EDA)이란 데이터를 분석하기 전에 데이터의 주요 특성을 이해하고, 데이터에 숨겨진 패턴, 이상치, 구조 등을 탐색하는
Continue reading